
4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 1/8

Here Scripts
Beginning with this lesson, we will construct a useful application. This application
will produce an HTML document that contains information about your system. I
spent a lot of time thinking about how to teach shell programming, and the approach
I have chosen is very different from most others that I have seen. Most favor a
systematic treatment of shell features, and often presume experience with other
programming languages. Although I do not assume that you already know how to
program, I realize that many people today know how to write HTML, so our program
will produce a web page. As we construct our script, we will discover step by step
the tools needed to solve the problem at hand.

Writing An HTML File With A Script
As you may know, a well formed HTML file contains the following content:

<html>

<head>
 <title>

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 2/8

 <title>
 The title of your page
 </title>
</head>

<body>
 Your page content goes here.
</body>
</html>

Now, with what we already know, we could write a script to produce the above
content:

#!/bin/bash

sysinfo_page - A script to produce an html file

echo "<html>"
echo "<head>"
echo " <title>"
echo " The title of your page"
echo " </title>"
echo "</head>"
echo ""
echo "<body>"
echo " Your page content goes here."

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 3/8

echo " Your page content goes here."
echo "</body>"
echo "</html>"

This script can be used as follows:

[me@linuxbox me]$ sysinfo_page > sysinfo_page.html

It has been said that the greatest programmers are also the laziest. They write
programs to save themselves work. Likewise, when clever programmers write
programs, they try to save themselves typing.

The first improvement to this script will be to replace the repeated use of the echo
command with a single instance by using quotation more efficiently:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

echo "<html>
 <head>

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 4/8

 <head>
 <title>
 The title of your page
 </title>
 </head>

 <body>
 Your page content goes here.
 </body>
 </html>"

Using quotation, it is possible to embed carriage returns in our text and have the
echo command's argument span multiple lines.

While this is certainly an improvement, it does have a limitation. Since many types
of markup used in html incorporate quotation marks themselves, it makes using a
quoted string a little awkward. A quoted string can be used but each embedded
quotation mark will need to be escaped with a backslash character.

In order to avoid the additional typing, we need to look for a better way to produce
our text. Fortunately, the shell provides one. It's called a here script.

#!/bin/bash

sysinfo_page - A script to produce an HTML file

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 5/8

sysinfo_page - A script to produce an HTML file

cat << _EOF_
<html>
<head>
 <title>
 The title of your page
 </title>
</head>

<body>
 Your page content goes here.
</body>
</html>
EOF

A here script (also sometimes called a here document) is an additional form of I/O
redirection. It provides a way to include content that will be given to the standard
input of a command. In the case of the script above, the standard input of the cat
command was given a stream of text from our script.

A here script is constructed like this:

command << token
content to be used as command's standard input

http://linuxcommand.org/lc3_lts0070.php

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 6/8

content to be used as command's standard input
token

token can be any string of characters. I use "_EOF_" (EOF is short for "End Of File")
because it is traditional, but you can use anything, as long as it does not conflict
with a bash reserved word. The token that ends the here script must exactly match
the one that starts it, or else the remainder of your script will be interpreted as more
standard input to the command.

There is one additional trick that can be used with a here script. Often you will want
to indent the content portion of the here script to improve the readability of your
script. You can do this if you change the script as follows:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat <<- _EOF_
 <html>
 <head>
 <title>
 The title of your page
 </title>
 </head>

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 7/8

 <body>
 Your page content goes here.
 </body>
 </html>
EOF

Changing the the "<<" to "<<-" causes bash to ignore the leading tabs (but not
spaces) in the here script. The output from the cat command will not contain any of
the leading tab characters.

O.k., let's make our page. We will edit our page to get it to say something:

#!/bin/bash

sysinfo_page - A script to produce an HTML file

cat <<- _EOF_
 <html>
 <head>
 <title>
 My System Information
 </title>
 </head>

4/2/2015 Writing shell scripts - Lesson 3: Here Scripts

http://linuxcommand.org/lc3_wss0030.php 8/8

 <body>
 <h1>My System Information</h1>
 </body>
 </html>
EOF

In our next lesson, we will make our script produce real information about the
system.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in
any medium, provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

